Climate ChangeHealth Care CostsFailing SchoolsEnergy SecurityHousing CostsBudget ShortfallsCalifornia is In Trouble

Asthma Rates

Energy Prices

Failing Infrastructure

Water Shortages

Political Gridlock

Land Use is the Answer at least part of

Vision California

Next Generation Sketch Models

FULL POLICY GROUP!

B

EMPAC Pust

38.3

Α

19.16

19.15

AUTO and FUEL TEC

R

Medium

38.3 84.2

A

27.1

Scenario Definition: Land Use Options & Policy Package Selecti

RapidFire

- ✓ Fully Operational
- ✓ Multiple Deployments

UrbanFootprint

✓ Pilot Deployment Underway

Scenarios and Metrics

Blueprints/Alternatives

CALTHORPEASSOCIATES URBAN DESIGNERS, PLANNERS, ARCHITECTS

Trend

Scenario Modeling

Environmental

- Greenhouse Gas Emissions
- Air Pollution
- Water and Energy Consumption

Transportation

- Vehicle Miles Traveled
- Transit, Walk, Bike Mode share
- Vehicle Emissions

Fiscal

- Capital Infrastructure Costs
- O&M/Public Works Costs
- City Revenues
- Household/Business Costs

Social

- Public Health Impacts
- Housing Diversity & Affordability
- Access to Jobs and Services
- Cost of Living

Peer Review & Technical Advisory

JCDAVIS

URBAN LAND USE AND TRANSPORTATION CENTER of the Institute of Transportation Studies

Victoria Transport Policy Institute

Caltrans

RapidFire Deployments

- Vision California: Statewide Scenarios and Analysis
 Southern California: SCAG SCS/RTP Alternatives Development and Modeling; SCS/RTP EIR Scenarios
 Bay Area: YouChooseBayArea Scenarios Process
- San Diego: North County Scenarios and Analysis
- Honolulu: Corridor and Island-Scale Scenarios and Analysis

California Rapid Fire Scenarios Land Use Mix for Growth Increment (2005-2050)

Housing Product Mix 2050 Total (Base + Increment)

Existing (2005)

Business As Usual

Growing Smart

Who We Are (Really)

California Housing Demand 2035

New Units Needed by 2035

Four Largest MPOs Only – SCAG, SANDAG, MTC, SACOG

Source: AC Nelson. The New California Dream. ULI 2011

Urban Oakland Uptown

Urban University Avenue

Urban Jackson Taylor Neighborhood

CALTHORPEASSOCIATES urban designers. planners, architects

Standard

Valencia, California ~ 4 November 2005

Source: Matt Jalbert, www.exuberance.com

California Rapid Fire Scenarios Land Use Mix for Growth Increment (2005-2050)

Land Consumed For New Growth to 2050 (mi²)

More land than Delaware and Rhode Island combined

Infrastructure Cost for New Growth Capital Costs for New Growth to 2050

AI v CI/C2

\$4,000 Saved per New Housing Unit : \$710 Million/Year

O&M Costs for New Growth Engineering & Public Works Costs for New Growth to 2050

\$15 Billion Saved : \$334 Million Per Year

Revenues from New Growth City Tax and Fee Revenue from New Growth to 2050

\$2.7 Billion/Year in Additional Revenue to Cities

CALTHORPEASSOCIATES URBAN DESIGNERS, PLANNERS, ARCHITECTS

AI v CI/C2

Vehicle Miles Traveled (VMT) Cumulative to 2050

Equivalent to taking ALL cars off California's roads for 15 years

Flickr: trash-photography

Business As Usual Growing Smart

Auto Fuel Cost Cost Per Household in 2050

\$3,100 Annual Savings Per Household in 2050

Flickr: TheTruthAbout...

Business As Usual Growing Smart

Building Energy Cumulative to 2050

Would Power ALL Homes in California for 8 Years

Business As Usual Growing Smart

Residential Water Use Cumulative to 2050

Water Savings Could Fill Hetch Hetchy 50 Times

AlvCl

Annual Household Costs Per Household Annual in 2050

\$7,300 Savings Per Household in 2050

Business As Usual Growing Smart

Flickr: Diablo_Solar

Public Respiratory Health Impacts Total Annual in 2035

AI v CI

Can save 140 premature deaths and 105,000 health incidences annually

Based on Analysis of Vision CA Results by TIAX, LLC

Respiratory Health Costs Total Annual in 2035

Saves \$1.66 billion annually by 2035

Business As Usual Growing Smart

Based on Analysis of Vision CA Results by TIAX, LLC

Fighting for Air

CALTHORPEASSOCIATES URBAN DESIGNERS, PLANNERS, ARCHITECTS

Flickr: Lance Page

Greenhouse Gas Emissions Annual in 2050

Emissions offset by 47,000 square miles of trees in a year. A forest covering 1/4 of California.

Business As Usual Growing Smart

YouChoose Bay Area

Your home, your future, your choice

County-Level Deployment

Explore Jobs-Housing Balance Issues

Capture Regional VMT and Climate Variation

Envision Bay Area (Beta)

1	2	Set Priorities w	hat is most	important to	you as	we grow	?	3	4	5
CHALLENGE	PRIORITIES	Low maintenance homes Public Health Large homes with big yards Clean air Vibrant downtown areas Shorter commutes Lower fees and taxes Walkable neighbourhoods Easy access to transit Lower cost of living Smaller eco-footprint		Agricultural land		1 of 12 Higher Priority	Agricultural Land Image: Constraint of the second	CHOICES	OUTCOMES	GET INVOLVED
Abo	ut this	Priority 🕠 🕕 wh	en done, click CHO	DICES. You can chang	e your prio	rities later.	Send Feedback	Share:		

FIGURE 4.2 Workshop Scenario Elements

system investr

non-auto strat

SCENARIO

SCENARIO 3

SCENARIO 4

transit. New housing is mostly single family (58 percent), with an increase in smallerlot single-family homes, as well as an increase in multi-family homes (42 percent). The transportation system is based on the package of improvements in the 2008 RTP. While these investments tend to favor automobile infrastructure, they also support new transit lines and other non-auto strategies and improvements.

development p Scenario 2. This scenario focuses more growth in walkable, mixed-use communities and in existing and planned high-quality transit areas. Under this scenario, there would be Scenario 4. T an increase in investments in transit and non-auto modes as compared to the 2008 RTP. in already deve Employment growth is focused in urban centers, around transit. Fewer new homes (29 support this sh percent) are single-family homes, as this scenario comes closer to meeting demand for a infrastructure a broader range of housing types, with new housing weighted less toward large-lot singlefeeder service family homes (2 percent) and more towards smaller-lot single-family homes (27 percent), to maximize th and multi-family condos, townhomes and apartments (70 percent). areas, the vast

townhomes, and multi-family condos and apartments. In terms of percentage, the mix of housing types is very similar to Scenario 2, but the location of the growth within the region is shifte FIGURE 4.3 Workshop Scenarios (2035)

Refill Growth

83%

Refill Growth

88%

Refill Growth

93%

Greenfield Land Consumption

Greenfield Land Consumption

Greenfield Land Consumption

COMMUNITY/NEIGHBORHOOD DESIGN

Mixed-Use Walkable

Standard Suburban

Standard Suburban

Mixed-Use Walkable

56%

23%

Urban Infill

42%

Urban Infill

HOUSING	OPTIONS	AND MIX	

New Growth	to 2035		
31%	27%	8%	34%
Resulting Ho	using Mix 203	5	
38%	19%	8%	35%

Large Lot Small Lot Townhome Multifamily

New Growth	to 2035		
2%	27%	22%	48%
Resulting Ho	using Mix 203	35	
31%	19%	11%	39%

Large Lot Small Lot Townhome Multifamily

New Growth	to 2035		
1%	23%	22%	53%
Resulting Ho	using Mix 203	35	1
31%	18%	11%	40%

Large Lot Small Lot Townhome Multifamily

Southern California RapidFire

2012 RTP/SCS PUBLIC OUTREACH WORKSHOPS

SOUTHERN CALIFORNIA ASSOCIATION of GOVERNMENTS

Rev. 25 July 2011

2035 SCENABIO	LAND CONSUMPTION	LOCAL INFRASTRUCTURE COSTS	VEHICLES MILES TRAVELED (VMT)	FUEL CONSUMPTION	HOUSEHOLD Costs	GREENHOUSE GAS (GHG) EMISSIONS	BUILDING ENERGY USE	WATER CONSUMPTION	PUBLIC HEALTH
* Scenario outputs are meant for comparative purposes only. Model outputs at this stane in the RTPRCS process are preliminary and subject to refinament as	Greenfield (Open Space) Land Consumption	Cumulative Capital Costs and General Fund Operations and Maintenance Expenditures Includes local reads, weate water and samilary enex, water apply, and pasks and recreation	VMT (Auto Passenger Vehicle Travel)	Automobile Fuel Use	Annual Fuel, Auto Operating, Energy, and Water Costs per Household (HH)	GHG Emissions from Auto Passenger Transportation and Building Energy Use	Annual Commercial and Residential Energy Use	Annual Water Use, Total and per Household (HH)	Annual Savings in Haaith Costs due to Reductions in Transportation-Related Pollutant Emissions
the scenario development and modeling process progresses.	[square miles]	[2009 dollars]	[miles]	[gallons]	[2009 dollars]	[Million Metric Tons CO _g e]	[Btu]	[acre feet and gallons]	[2009 dollars]
Missed-User Warksable Missed-User Warksable 41% 45% 14% Standard Suburban Urban krifit Standard Suburban Urban krifit	251 sq mi	Capital Destitions/ Maintenance \$35 bil	20,920 mi per HH	5.5 bil gal	Fuel/ Automobile Energy/ Water \$15,100 per HH	Transportation Building 96 MMT	Commercial Residential 835 tril Btu	3.0 mil ac ft	\$635 mil Savings hom status quo
Minad-Use Welkable 6% 75% 19% Standard Suburban Urban Initial Keevidting Housing Mir 2035	127 sq mi	\$31 bil	18,630 mi per HH	4.9 bil gal	\$13,600 per HH	88 MMT	775 tril Btu	2.9 mil ac ft	\$915 mil Savings kom status quo
Mixed-Use Waikable 1% 23% 22% 53% Mixed-Use Waikable 1% 23% 53% 4% 73% 23% 23% Standard Suburban Uitban Infiti	84 sq mi	\$29 bil	18,250 mi per HH	4.8 bil gal	\$13,350 per HH	86 MMT	760 tril Btu	2.9 mil ac ft	\$960 mil Savings from status quo
Mered-Use Walkable 2% 56% 42% Standard Suburban Udban Infid	46 sq mi	\$25 bil	17,990 mi per HH	4.7 bil gal	\$13,150 per HH	85 MMT	745 tril Btu	2.8 mil ac ft	\$990 mil Savinga from status quo

Developed for the Southern California Association of Governments (SCAG)

UrbanFootprint Open Source Geo-Spatial Model Model Includes: Automated base data loading 0 35+ Place type library 90+ Building type library Scenario translation engine Web-based scenario painter 8d sketch travel engine Full co-benefits analysis Modular, expandable Pilot deployment underway Will be fully loaded with all major True Open Source Platform California MPO base data by June Linux 🇖 2012 www.calthorpe.com for model info 🛟 ubuntu PostgreSQL ogr2ogr GDAL

UrbanFootprint Model Schema

Place Types Building Types


```
Translation
```

Convert Input Scenarios to Future Scenarios

Painting Scenario Sketching Scenario Editing

Analysis

- 8D Travel
- Health
- Fiscal
- Energy
- Water
- Emissions

Place Type Studies (90+)

Downtown San Diego (Gaslamp District) San Diego, California

Bounded by E St., 8th Ave., Market St., and 4th Ave. Location:

Planner: (incremental)

Site Statistics:

	Site Size (gross)	30 acres
	Site Size (net)	16.6 acres
•	Block Size (average)	200' x 320'
	Density (gross)	28 du/ac
•	Density (net)	51 du/ac
	FAR (gross)	1.61

Building Type Studies (300+)

East End Gateway (Site 1)

Sacramento, California

Location:		NW corner of 16th and N Street, Sacramento, CA						
Developer:		Em Johnson Interest & Nehemiah Community Reinvestment Fund Holdings (NCRFH)						
Architect:		Devrouax + Purnell Architects; 202.483.2878						
Planner:		N/A						
Contact Info:		Marc de la Vergne; mdelave	rgne@cadanet.or	g; 916.322.2114				
Site Statist	ics:							
	Area	a	0.7 ac	0.28 ha				
	Len	gth	190 ft	57.9 m				
Width		lth	160 ft	48.8 m				
General Shape		eral Shape	Rectalinea	r				
 Orientation 		entation	W-NW to	E-SE				
• FAR			2.66					
Building St	atist	ics:						
	Hei	ght	100 ft	30.5 m				
•	No.	of Stories	8 floors					
•	Con	struction Type	Type II (assumed)					
•	Effic	ciency (GLA/total area)	85% (assumed)					
Program:								
	Reta	ail Area	6 k-sqft	557 sqm				
•	Resi	idential Area	75 k-sqft	6,967 sqm				
•	No.	of Units	98 du					
•	Unit	t Type	Condomin	ium				
Parking:								
	Parl	king Area	38,400 sqt	ft				
	No.	of Parking Stalls	120 stalls					
•	Parl	king Typology	Below gra	de structure				
Other Info	rmat	ion:						
•	Proj	ject Cost	\$37 MM					
•	Con	struction (start date)	2010 (Oct)				
•	Con	struction (completion)	2012 (Jan)					

Faster and More Efficient

Place Type Translation for 8- County San Joaquin Valley

Run Time

URBAN DESIGNERS, PLANNERS, ARCHITECTS

Scenario Reports & Model Documentation

www.calthorpe.com www.visioncalifornia.org www.youchoosebayarea.org www.scag.ca.gov/rtp2012

CALTHORPEASSOCIATES

URBAN DESIGNERS, PLANNERS, ARCHITECTS

Joe DiStefano joed@calthorpe.com

Honolulu TOD Study

Land Consumed

2010-2050

11 sq. mi developed 1992 - 2005

Developed Land 1992: 141 sq. miles 2005: 152 sq. miles

2050 Bus. As Usual: 209 sq. miles TOD Future: 162 sq. miles

flickr – beatjoan9

Business As Usual TOD Future

Driving Impacts

Vehicle Miles Traveled Greenhouse Gas Emissions Billions 64 Billion MMT 7.8 2.4 Fewer Miles 3.1 billion by fewer 40% 2050 miles/year Lower 4.6 1.4 Like **Removing All Cars From** Oahu's Roads for 14 Years 2010: 4.7 billion

Business As Usual

TOD Future

Business As Usual TOD Future

Total Costs & Emissions

